Liu C, Zhou H, Zhou J. The functions of nanotechnology in crop manufacturing. Molecules. 2021;26:1–16.
RUI M, et al. Iron oxide nanoparticles as a possible iron fertilizer for peanut (Arachis hypogaea). Frontiers Plant Sci. 2016. https://doi.org/10.3389/fpls.2016.00815.
Fatima F, Hashim A, Anees S. Efficacy of nanoparticles as nanofertilizer manufacturing: a evaluate. Environ Sci Pollut Res. 2021;28:1292–303.
Maruyama C, Bilesky-Jose N, Lima R, Fraceto LF. Encapsulation of Trichoderma harzianum preserves enzymatic exercise and enhances the potential for organic management. Entrance Bioeng Biotechnol. 2020;8:1–14.
Mali SC, Raj S, Trivedi R. Nanotechnology a novel strategy to boost crop productiveness. Biochem Biophys Rep. 2020;24:1–4.
Wang CY, Yang J, Qin JC, Yang YW. Eco-friendly nanoplatforms for crop high quality management, safety, and diet. Adv Sci. 2021;8:1–27.
WANG S, et al. A novel upconversion luminescence turn-on nanosensor for ratiometric detection of organophosphorus pesticides. RSC Adv. 2016. https://doi.org/10.1039/C6RA05978C.
Sharma P, Pandey V, Sharma MMM, Patra A, Singh B, Mehta S, Husen A. A evaluate on biosensors and nanosensors software in agroecosystems. Nanoscale Res Lett. 2021;16:1–24.
Pasquoto-stigliani T, Campos EVR, Oliveira JL, Silva CMG, Bilesky-José N, et al. Nanocapsules containing neem (Azadirachta Indica) oil improvement characterization, and toxicity analysis. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-06092-.
Oliveira JL, et al. Geraniol encapsulated in chitosan/gum arabic nanoparticles: a promising system for pest administration in sustainable agriculture. J Agricult Meals Chem. 2018;66:5325–34.
Pascoli M, An ecotoxicological perspective, et al. Neem oil primarily based nanopesticide as an environmentally-friendly formulation for functions in sustainable agriculture. Sci Whole Environ. 2019;677(57):67.
Oliveira JL, Fraceto LF, Bravo A, Polanczyk RA. Encapsulation methods for Bacillus thuringiensis: from now to the long run. J Agric Meals Chem. 2021;69:4564–77.
Dam P, Paret ML, Mondal R, Mondal AK. Development of noble metallic nanoparticles in agriculture: a promising future. Pedosphere. 2023;33:116–28.
Guilger-Casagrande M, Germano-Costa T, Bilesky-José N, Pasquoto-Stigliani T, Carvalho L, Fraceto LF, Lima R. Affect of the capping of biogenic silver nanoparticles on their toxicity and mechanism of motion in the direction of Sclerotinia sclerotiorum. J Nanobiotechnol. 2021;19:1–18.
Andersen CP, et al. Germination and early plant improvement of ten plant species uncovered to titanium dioxide and cerium oxide nanoparticles. Environ Toxicol hem. 2016;35(9):2223–9.
Lyu S, Wei X, Chen J, Wang C, Wang X, Pand D. Titanium as a useful aspect for crop manufacturing. Entrance Plant Sci. 2017;8:1–19.
Mathew SS, Sunny NE, Shanmugam V. Inexperienced synthesis of anatase titanium dioxide nanoparticles utilizing Cuminum cyminum seed extract; impact on Mung bean (Vigna radiata) seed germination. Inorg Chem Commun. 2021;126:1–7.
Sidhu AK, Verma N, Kaushal P. Function of biogenic capping brokers within the synthesis of metallic nanoparticles and analysis of their therapeutic potential. Entrance Nanotechnol. 2022;3:1–17.
Ballottin D, et al. Elucidating protein involvement within the stabilization of the biogenic silver nanoparticles. Nanoscale Res Lett. 2016. https://doi.org/10.1186/s11671-016-1538-y.
Guilger M, et al. Biogenic silver nanoparticles primarily based on Trichoderma harzianum: synthesis characterization, toxicity analysis and organic exercise. Sci Rep. 2017. https://doi.org/10.1038/srep44421.
Guilger-Casagrande M, Germano-Costa T, Pasquoto-Stigliani T, Fraceto LF, Lima R. Biosynthesis of silver nanoparticles using Trichoderma harzianum with enzymatic stimulation for the management of Sclerotinia sclerotiorum. Sci Rep. 2019;9:14351.
Bilesky-José N, Maruyama C, Germano-Costa T, Campos E, Carvalho L, Grillo R, Fraceto LF, Lima R. Biogenic α-Fe2O3 nanoparticles improve the organic exercise of trichoderma in opposition to the plant pathogen Sclerotinia sclerotiorum. ACS Maintain Chem Eng. 2021;9:1669–83.
Ramírez-Valdespino CA, Orrantia-Borunda E. Trichoderma and nanotechnology in sustainable agriculture: a evaluate. Frontiers Fungal Biol. 2021;2:1–16.
Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Araniti F, Sharma A. Trichoderma: the “secrets and techniques” of a multitalented biocontrol agent. Crops. 2020;9:1–25.
BononI L, Chiaramonte JB, Pansa CC, Moitinho MA, Melo IS. Phosphorus-solubilizing Trichoderma spp from amazon soils enhance soybean plant progress. Sci Rep. 2020;10:2058.
Alfiky A, Weisskopf L. Deciphering Trichoderma–plant-pathogen interactions for higher improvement of biocontrol functions. J Fungi. 2021;7:1–18.
Sarangi S, Swain H, Adak T, Bhattacharyya P, Mukherjee AK, Kumar G, Mehetre ST. Trichoderma-mediated rice straw compost promotes plant progress and imparts stress tolerance. Environ Sci Pollut Res. 2021;28:44014–27.
O’Sullivan CA, Belt Ok, Thatcher LF. Tackling management of a cosmopolitan phytopathogen: sclerotinia. Entrance Plant Sci. 2021;12:1–18.
Xu L, Li G, Jiang D, Chen W. Sclerotinia sclerotiorum: an analysis of virulence theories. Annu Rev Phytopathol. 2018;56:311–38.
Asad, S. A. 2022 Mechanisms of motion and biocontrol potential of Trichoderma in opposition to fungal plant ailments—A evaluate. Ecological Complexity. 49 100978
Mironenka J, Rózalska S, Sobón A, Bernat P. Trichoderma harzianum metabolites disturb Fusarium culmorum metabolism: metabolomic and proteomic research. Microbiol Res. 2021;249: 126770.
Liu Q, Meng X, Li T, Raza W, Liu D, Shen Q. Doable position of accelerating nutrient availabilities the expansion promotion of peppers (Capsicum annuum L) by Trichoderma guizhouense NJAU4742-based organic natural fertilizer. Microorganisms. 2020;8(1):23.
Wang H, Zhang R, Mao Y, Jiang W, Chen X, Shen X, Yin C, Mao Z. Results of Trichoderma asperellum 6S–2 on apple tree progress and replanted soil microbial surroundings. J Fungi. 2022;8:1–18.
Morán-Diez ME, Alba AEM, Rubio MB, Hermosa R, Monte E. Trichoderma and the plant heritable priming responses. J Fungi. 2021;7:1–23.
Swain H, Adak T, Mukherjee AK, Sarangi S, Samal P, Khandual A, Jena R, Bhattacharyya P, Naik SK, Mehetre ST, Baite MS, Sunil Kumar M, Zaidi NW. Biopriming With Trichoderma strains remoted from tree bark improves plant progress, antioxidative protection system in rice and improve straw degradation capability entrance. Microbiol. 2021;12(1):15.
Marra R, Lombardi N, Derrico G, Troisi J, Scala G, Vinale F, et al. Software of Trichoderma strains and metabolites enhances soybean productiveness and nutrient content material. J Agric Meals Chem. 2019;67:1814–22.
Mansoor A, Khurshid Z, Khan MT, Mansoor E, Butt FA, Jamal A, Palma PJ. Medical and dental functions of titania nanoparticles: an outline. Nanomaterials. 2022;12:1–41.
Satti SH, Raja NI, Javed B, Akram A, Mashwani ZR, Ahmad MS, Ikram M. Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat vegetation to manage Bipolaris sorokiniana. PLoS ONE. 2021;6:1–19.
Raliya R, Biswas P, Tarafdar JC. TiO2 nanoparticle biosynthesis and its physiological impact on mungbean (Vigna radiata L). Biotechnol Rep. 2015;5:22–6.
Geraldine AM, et al. Cell wall-degrading enzymes and parasitism of sclerotia are key elements on subject biocontrol of white mould by Trichoderma spp. Biol Management. 2013;67:308–16.
Qualhato TF, et al. analysis of antagonism and hydrolytic enzyme manufacturing mycoparasitism research of Trichoderma species in opposition to three phytopathogenic fung. Biotechnol Lett. 2013;35(1461):1468.
Bradford MM. A speedy and delicate technique for the quantification of microgram portions of protein using the precept of protein-dye binding. Anal Biochem. 1976;7(72):248–54.
Kirthi AV, et al. Biosynthesis of titanium dioxide nanoparticles utilizing bacterium Bacillus subtilis. Mater Lett. 2011;65:2745–7.
Djurišić AB, et al. Toxicity of steel oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small J. 2015;11(1):26–44.
Gap P. Particle Monitoring Evaluation (PTA). In: Hodoroaba VD, Unger WES, Shard AG, editors. Characterization of nanoparticles measurement processes for nanoparticles. Amsterdam: Elsevier; 2019.
Monteiro RA, Camara MC, Oliveira JL, et al. Zein based-nanoparticles loaded botanical pesticides in pest management: An enzyme stimuli-, p. responsive strategy aiming sustainable agriculture. J Hazard Mater. 2021;417:1–11.
Mittal N, Kaur G. Investigations on polymeric nanoparticles for ocular supply. Adv Polym Technol. 2019;2019:1–15.
Agrawal T, Kotasthane AS. Chitinolytic assay of indigenous trichoderma isolates collected from totally different geographical places of Chhattisgarh in Central India. Springerplus. 2012;1:1–10.
Kamiloglu S, Sari G, Ozdal T, Capanoglu E. Tips for cell viability assays. Meals Frontiers. 2020;1:332–49.
Cordeiro ACS, Leite SGF, Dezotti M. Inativação por oxidação fotocatalítica de Escherichia coli e Pseudomonas sp. Quim Nova. 2004;27(5):689–94.
George S, et al. Differential impact of photo voltaic gentle in growing the toxicity of silver and titanium dioxide nanoparticles to a fish cell line and Zebra Fish embryos. Environ Sci Technol. 2014;48:6374–82.
Singh NP, et al. A easy method for quantitation of low ranges of DNA harm in particular person cells. Experimen Cell Res. 1988;175:184–91.
Collins AR, Fleming IM, Gedik CM. In vitro restore of oxidative and ultraviolet-induced DNA harm in supercoiled nucleoid DNA by human cell extract. Biochimica Biophysica Acta Gene Struct Specific. 1994;1219:724–7.
Qi J, et al. Potential of entomopathogenic Bacillus thuringiensis as plant progress selling rhizobacteria and organic management brokers for tomato Fusarium wilt. Int J Environ Agricult Res. 2016;2:55–63.
Ghadamgahi F, Tarighi S, Taheri P, Saripella GV, Anzalone A, Kalyandurg PB, Catara V, Ortiz R, Vetukuri RR. Plant growth-promoting exercise of Pseudomonas aeruginosa FG106 and Its capability to behave as a biocontrol agent in opposition to potato. Tomato Taro Pathogens Biol. 2022;11:1–27.
Meena RS, et al. Response and interplay of Bradyrhyzobium japonicum and arbuscular mycorrhizal fungi within the soybean rhizosphere. Plant Development Regul. 2018. https://doi.org/10.1007/s10725-017-0334-8.
McKINNON AC, et al. Beauveria bassiana as an endophyte: a essential evaluate on related methodology and biocontrol potential. Biocontrol. 2017;62:1–17.
Hjelmso MH, Hansen LH, Baelum J, Feld L, Holben WE, Jacobsen CS. Highresolution soften evaluation for speedy comparability of bacterial group compositions. Appl Environ Microbiol. 2014;80:3568–75.
Maruyama CR, Guilger M, Pascoli M, Bilesky-Jose N, Abhilash PC, Fraceto LF, Lima R. Nanoparticles primarily based on chitosan as carriers for the mixed herbicides imazapic and imazapyr. Sci Rep. 2016;6:1–13.
Hoagland DR, Arnon DI. The water tradition technique for rising vegetation with out soil. berkeley: california agricultural experiment station. Round. 1950;34:1–32.
Alexieva V, et al. The impact of drought and ultraviolet radiation on progress and stress markers in pea and wheat. Plant Cell Environ. 2001;24:1337–44.
Camejo G, Wallin B, Enojärvi M. Evaluation of oxidation and antioxidants utilizing microtiter plates. In: Armstrong D, editor. Free radical and antioxidants protocols. New Jersey: Humana Press; 1998.
Bitencourt GA, Chiari L, Valle CB, Laura VA, Moro JR. Avaliação de diferentes métodos para extração de RNA whole de folhas e raízes de braquiária. Embrapa—Boletim de Pesquisa e Desenvolvimento. 2011;29:1–23.
Nair PMG, Chung IM. A mechanistic examine on the poisonous impact of copper oxide nanoparticles in soybean (Glycine max L) root improvement and lignification of root cells. Biol Hint Factor Res. 2014;162:342–52.
Jassal PS, Kaur D, Prasad R, Singh J. Inexperienced synthesis of titanium dioxide nanoparticles: improvement and functions. J Agricult Meals Res. 2022;71:1–14.
Hietzschold S, et al. Does nitrate reductase play a job in silver nanoparticle synthesis? Proof of NADPH as the only decreasing agent. ACS Maintain Chem Eng. 2019;7:8070–6.
Javed R, Zia M, Naz S, Aisida SO, Ain NU, Ao Q. Function of capping brokers within the software of nanoparticles in biomedicine and environmental remediation: current tendencies and future prospects. J Nanobiotechnol. 2020;18:1–15.
Singh P, Garg A, Pandit S, Mokkapati VRSS, Mijakovic I. Antimicrobial results of biogenic nanoparticles. Nanomaterials. 2018;8:1–19.
Neina, D. The position of soil ph in plant diet and soil remediation. Appl Environ Soil Sci 2019
ALMEIDA, O. A. Qualidade da água de irrigação. Embrapa Mandioca e Fruticultura, Cruz das Almas. 2010. Disponível em: https://ainfo.cnptia.embrapa.br/digital/bitstream/merchandise/26783/1/livro-qualidade-agua.pdf. Acesso em: 18 Nov. 2018.
Miorini TJJ, Raetano CG, Everhart SE. Management of white mould of dry bean and residual exercise of fungicides utilized by chemigation. Crop Defend. 2017;94:192–202.
Choudhary Ok, Kataria J, Sharma S. Analysis of the kinetic and catalytic properties of biogenically synthesized silver nanoparticles. J Clear Prod. 2018;198:882–90.
Zeilinger S, Gruber S, Bansal R, Mukherjee PK. Secondary metabolism in Trichoderma—chemistry meets genomics. Fungal Biol Rev. 2016;30:74–90.
Kubicek CP, Komon-Zelazowska M, Druzhinina IS. Fungal genus Hypocrea/Trichoderma: from barcodes to biodiversity. J Zhejiang Univ Sci B. 2008;9:753–63.
Vinale F, et al. Elements affecting the manufacturing of Trichoderma harzianum secondary metabolites through the interplay with totally different plant pathogens. LettAppl Microbiol. 2009;48:705–11.
Verma M, Brar SK, Tyagi RD, et al. Antagonistic fungi Trichoderma spp panoply of organic management. Biochem Eng J. 2007;37(1):1–20.
Troian RF, Steindorff AS, Ramadam H, Arrudaw CJU. Mycoparasitism research of Trichoderma harzianum in opposition to Sclerotinia sclerotiorum: analysis of antagonism and expression of cell wall-degrading enzymes genes. Biotechnol Lett. 2014;36(2095):2101.
Haider AJ, Jameel ZN, Taha SY. Synthesis and characterization of TiO2 nanoparticles through sol-gel technique by pulse laser ablation. Eng Tech J. 2015;33:761–71.
El-Desoky MM, Morad I, Wasfy MH, Mansour AF. Synthesis, structural and electrical properties of PVA/TiO2 nanocomposite movies with totally different TiO2 phases ready by sol–gel method. J Mater Sci Mater Electron. 2020;31:17574–84.
Jurić S, D̵ermić E, Topolovec-pintarić S, Bedek M, Vinceković M. Physicochemical properties and launch traits of calcium alginate microspheres loaded with trichoderma viride spores. J Integr Agric. 2019;18:2534–48.
EL-Moslamy SH, Elkady MF, Rezk AH, Abdel-Fattah YR. Making use of taguchi design and large-scale technique for mycosynthesis of nano-silver from endophytic trichoderma harzianum SYA F4 and Its software in opposition to phytopathogens. Sci Rep. 2017;7:45297.
Lau ECHT, Carvalho LB, Pereira AES, Montanha GS, Corrêa CG, Carvalho HWP, Ganin AY, Fraceto LF, Yiu HHP. Localization of coated iron oxide (Fe3O4) nanoparticles on tomato seeds and their results on progress. ACS Appl Bio Mater. 2020;3:4109.
Park EJ, et al. Oxidative stress and apoptosis induced by titanium dioxidenanoparticles in cultured BEAS-2B cells. Toxicol Lett. 2008;180:222–9.
Jaroenworaluck A, et al. Traits of silica-coated TiO2 and its UV absorption for sunscreen beauty functions. Floor Interface Anal. 2006;38:473–7.
Weir A, et al. Titanium dioxide nanoparticles in meals and private care merchandise. Environ Sci Technol. 2012;46:2242–50.
Schneider SL, Lim HW. A evaluate of inorganic UV filters zinc oxide and titanium dioxide. Photodermatol Photoimmunol Photomed. 2019;35:442–6.
Dréno B, Alexis A, Chuberre B, Marinovich M. Security of titanium dioxide nanoparticles in cosmetics. J Eur Acad Dermatol Venereol. 2019;33:34–46.
Fivenson D, Sabzevari N, Qiblawi S, Blitz J, Norton BB, Norton SA. Sunscreens: UV filters to guard us: half 2-increasing consciousness of UV filters and their potential toxicities to us and our surroundings. Int J Ladies’s Dermatol. 2021;7(2021):45–69.
Morlando A, et al. Suppression of the photocatalytic exercise of TiO2 nanoparticles encapsulated by chitosan by a spray-drying technique with potential to be used in sunblocking functions. Powder Technol. 2018;329:252–9.
Benz D, Bui HV, Hintzen HT, Kreutzer MT, van Ommen JR. Mechanistic perception into the improved photocatalytic degradation of dyes for an ultrathin coating of SiO2 on TiO2 (P25) nanoparticles. Chem Eng J Adv. 2022;10:1–9.
Grande F, Tucci P. Titanium dioxide nanoparticles: a threat for human well being? Mini-Rev Med Chem. 2016;16:762–9.
Hamzeh M, Sunahara GI. In vitro cytotoxicity and genotoxicity research of titanium dioxide (TiO2) nanoparticles in Chinese language hamster lung fibroblast cells. Toxicol In Vitro. 2013;27:864–73.
Hanot-roy M, et al. Oxidative stress pathways concerned in cytotoxicity and genotoxicity of titanium dioxide (TiO2) nanoparticles on cells constitutive of alveolo-capillary barrier in vitro. Toxicology Vitro. 2016;33:125–35.
Bhattacharya Ok, et al. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation however not DNA-breakage in human lung cells. Particle Fibre Toxicol. 2009. https://doi.org/10.1186/1743-8977-6-17.
Patel S, Patel P, Bakshi SR. Titanium dioxide nanoparticles: an in vitro examine of DNA binding, chromosome aberration assay, and comet assay. Cytotechnology. 2017. https://doi.org/10.1007/s10616-016-0054-3.
Armand L, et al. Lengthy-term publicity of A549 cells to titanium dioxide nanoparticles induces DNA harm and sensitizes cells in the direction of genotoxic brokers. Nanotoxicology. 2016;10(7):913–23.
Koca FD, Duman F. Genotoxic and cytotoxic exercise of inexperienced synthesized TiO2 nanoparticles. Appl Nanosci. 2018. https://doi.org/10.1007/s13204-018-0712-1.
Simonin M, et al. Titanium dioxide nanoparticles strongly influence soil microbial operate by affecting archaeal nitrifiers. Sci Rep. 2016. https://doi.org/10.1038/srep33643.
Feizi H, et al. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere. 2013;91:506–11.
Mahmoodzadeh H, Aghili R, Navabi M. Physiological results of TiO2 nanoparticles on wheat (Triticum aestivum). Tech J Eng Appl Sci. 2013;3(14):1365–70.
Track U, et al. Purposeful analyses of nanoparticle toxicity: a comparative examine of the results of tio2 and ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Security. 2013;93:60–7.
Antisari LV, et al. Uptake and translocation of metals and vitamins in tomato grown in soil polluted with steel oxide (Ceo, Fe3O4, SnO2, TiO2) or metallic (Ag Co, Ni) engineered nanoparticles. Environ Sci Ballot Res. 2015;22:1841–53.
Track G, et al. Physiological impact of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem. 2012. https://doi.org/10.1002/and so forth.1933.
Mahmoodzadeh H, Navabi M, Kashefi H. Impact of nanoscale titanium dioxide nanoparticles on the germination and progress of canola (Brassica napus). J Ornam Horticult Crops. 2013;3(1):25–32.
Khot LR, et al. Purposes of nanomaterials in agricultural manufacturing and crop safety. Crop Prot. 2012;35:64–70.
Foltête AS, et al. Environmental influence of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environ Ballot. 2011;159:2515–22.
Pandey V, Awasthi M, Singh S, Tiwari S, DWIVEDI U. A complete evaluate on operate and software of plant peroxidases. Biochem Anal Biochem. 2017;6(1):16.
Cunha-Lopes TL, Siqueira-Soares RC, Almeida GHG, Melo GSR, Barreto GE, Oliveira DM, Santos WD, Ferrarese-Filho O, Marchiosi R. Lignin-induced progress inhibition in soybean uncovered to iron oxide nanoparticles. Chemosphere. 2018;211:226–34.
Cerny M, Habánová H, Berka M, Luklová M, Brzobohatý B. Hydrogen peroxide: its position in plant biology and crosstalk with signalling networks. Int J Mol Sci. 2018;19:2812.