Migliato Marega, G. et al. Logic-in-memory primarily based on an atomically skinny semiconductor. Nature 587, 72–77 (2020).
Wang, Z. et al. Resistive switching supplies for data processing. Nat. Rev. Mater. 5, 173–195 (2020).
Yang, R. et al. Ternary content-addressable reminiscence with MoS2 transistors for massively parallel knowledge search. Nat. Electron. 2, 108–114 (2019).
Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and knowledge storage on a single chip. Nature 547, 74–78 (2017).
Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Reminiscence gadgets and purposes for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).
Dutta, S. et al. Monolithic 3D integration of excessive endurance multi-bit ferroelectric FET for accelerating compute-in-memory. In 2020 IEEE Worldwide Electron Gadgets Assembly (IEDM) 36.4.1–36.4.4 (IEEE, 2020).
Khan, A. I., Keshavarzi, A. & Datta, S. The way forward for ferroelectric field-effect transistor know-how. Nat. Electron. 3, 588–597 (2020).
Akinwande, D. et al. Graphene and two-dimensional supplies for silicon know-how. Nature 573, 507–518 (2019).
Polyushkin, D. Ok. et al. Analogue two-dimensional semiconductor electronics. Nat. Electron. 3, 486–491 (2020).
Ni, Ok. et al. Ferroelectric ternary content-addressable reminiscence for one-shot studying. Nat. Electron. 2, 521–529 (2019).
Wang, D. et al. Ferroelectric switching in sub-20 nm aluminum scandium nitride skinny movies. IEEE Electron Gadget Lett. 41, 1774–1777 (2020).
Liu, X. et al. Publish-CMOS appropriate aluminum scandium nitride/2D channel ferroelectric field-effect-transistor reminiscence. Nano Lett. 21, 3753–3761 (2021).
Tsai, S.-L. et al. Room-temperature ÿdeposition of a poling-free ferroelectric AlScN movie by reactive sputtering. Appl. Phys. Lett. 118, 082902 (2021).
Wang, D. et al. Sub-microsecond polarization switching in (Al,Sc)N ferroelectric capacitors grown on complementary metal-oxide-semiconductor-compatible aluminum electrodes. Phys. Standing Solidi RRL 15, 2000575 (2021).
Islam, M. R. et al. On the distinctive temperature stability of ferroelectric Al1-xScxN skinny movies. Appl. Phys. Lett. 118, 232905 (2021).
Fichtner, S., Wolff, N., Lofink, F., Kienle, L. & Wagner, B. AlScN: a III-V semiconductor primarily based ferroelectric. J. Appl. Phys. 125, 114103 (2019).
Lederer, M. et al. Native crystallographic section detection and texture mapping in ferroelectric Zr doped HfO2 movies by transmission-EBSD. Appl. Phys. Lett. 115, 222902 (2019).
Dragoman, M. et al. Ferroelectrics on the nanoscale: supplies and gadgets—a important assessment. Crit. Rev. Strong State Mater. Sci. 1–19 (2022).
Siao, M. D. et al. Two-dimensional digital transport and floor electron accumulation in MoS2. Nat. Commun. 9, 1442 (2018).
Mulaosmanovic, H. et al. Ferroelectric field-effect transistors primarily based on HfO2: a assessment. Nanotechnology 32, 502002 (2021).
Mikolajick, T. et al. Subsequent technology ferroelectric supplies for semiconductor course of integration and their purposes. J. Appl. Phys. 129, 100901 (2021).
Aljarb, A. et al. Ledge-directed epitaxy of repeatedly self-aligned single-crystalline nanoribbons of transition metallic dichalcogenides. Nat. Mater. 19, 1300–1306 (2020).
Sebastian, A., Pendurthi, R., Choudhury, T. H., Redwing, J. M. & Das, S. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12, 693 (2021).
Zhang, Y., Brar, V. W., Girit, C., Zettl, A. & Crommie, M. F. Origin of spatial cost inhomogeneity in graphene. Nat. Phys. 5, 722–726 (2009).
Liu, Y.-S. & Su, P. Variability evaluation for ferroelectric FET nonvolatile reminiscences contemplating random ferroelectric-dielectric section distribution. IEEE Electron Gadget Lett. 41, 369–372 (2020).
Lederer, M. et al. Ferroelectric area impact transistors as a synapse for neuromorphic software. IEEE Trans. Electron Gadgets 68, 2295–2300 (2021).
Luo, Y et al. MLP+NeuroSimV3.0: bettering on-chip studying efficiency with gadget to algorithm optimizations. In ICONS ’19: Proc. Worldwide Convention on Neuromorphic Techniques 1–7 (ACM, 2019).
Ko, C. et al. Ferroelectrically gated atomically skinny transition-metal dichalcogenides as nonvolatile reminiscence. Adv. Mater. 28, 2923–2930 (2016).
Xu, L. et al. Ferroelectric-modulated MoS2 field-effect transistors as multilevel nonvolatile reminiscence. ACS Appl. Mater. Interfaces 12, 44902–44911 (2020).
Younger Tack Lee, H. Ok. et al. Nonvolatile ferroelectric reminiscence circuit utilizing black phosphorus nanosheet-based field-effect transistors with P(VDF-TrFE) polymer. ACS Nano 9, 10394–10401 (2015).
Jiang, X. et al. Ferroelectric field-effect transistors primarily based on WSe2/CuInP2S6 heterostructures for reminiscence purposes. ACS Appl. Electron. Mater. 3, 4711–4717 (2021).
Si, M., Liao, P. Y., Qiu, G., Duan, Y. & Ye, P. D. Ferroelectric field-effect transistors primarily based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano 12, 6700–6705 (2018).
Wang, X. et al. Ferroelectric FET for nonvolatile reminiscence software with two-dimensional MoSe2 channels. 2D Mater 4, 025036 (2017).
Liu, L. et al. Electrical characterization of MoS2 field-effect transistors with totally different dielectric polymer gate. AIP Adv 7, 065121 (2017).
Jiawen, X. et al. Experimental demonstration of HfO2-based ferroelectric FET with MoS2 channel for high-density and low-power reminiscence software. In 2021 Silicon Nanoelectronics Workshop (SNW) 1–2 (IEEE, 2021).
Huang, Ok. et al. Hf0.5Zr0.5O2 ferroelectric embedded dual-gate MoS2 area impact transistors for reminiscence merged logic purposes. IEEE Electron Gadget Lett. 41, 1600–1603 (2020).
Zhang, S. et al. Low voltage working 2D MoS2 ferroelectric reminiscence transistor with Hf1–xZrxO2 gate construction. Nanoscale Res. Lett. 15, 157 (2020).