Coherent magnon-induced domain-wall movement in a magnetic insulator channel


  • Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D. 43, 264001 (2010).

  • Serga, A. A., Chumak, A. V. & Hillebrands, B. YIG magnonics. J. Phys. D 43, 264002 (2010).

  • Khitun, A., Bao, M. & Wang, Okay. L. Magnonic logic circuits. J. Phys. D 43, 264005 (2010).

  • Kajiwara, Y. et al. Transmission {of electrical} alerts by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article 

    Google Scholar
     

  • Csaba, G., Papp, Á. & Porod, W. Views of utilizing spin waves for computing and sign processing. Phys. Lett. A 381, 1471–1476 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sheng, L., Chen, J., Wang, H. & Yu, H. Magnonics based mostly on thin-film iron garnets. J. Phys. Soc. Jpn 90, 081005 (2021).

    Article 

    Google Scholar
     

  • Yan, P., Wang, X. S. & Wang, X. R. All-magnonic spin-transfer torque and area wall propagation. Phys. Rev. Lett. 107, 177207 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kovalev, A. A. & Tserkovnyak, Y. Thermomagnonic spin switch and Peltier results in insulating magnets. Europhys. Lett. 97, 67002 (2012).

    Article 

    Google Scholar
     

  • Hinzke, D. & Nowak, U. Area wall movement by the magnonic spin Seebeck impact. Phys. Rev. Lett. 107, 027205 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Magnetization switching by magnon-mediated spin torque via an antiferromagnetic insulator. Science 366, 1125–1128 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, W. et al. Direct imaging of thermally pushed area wall movement in magnetic insulators. Phys. Rev. Lett. 110, 177202 (2013).

    Article 

    Google Scholar
     

  • Han, J., Zhang, P., Hou, J. T., Siddiqui, S. A. & Liu, L. Mutual management of coherent spin waves and magnetic area partitions in a magnonic system. Science 366, 1121–1125 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pirro, P. et al. Experimental statement of the interplay of propagating spin waves with Néel area partitions in a Landau area construction. Appl. Phys. Lett. 106, 232405 (2015).

    Article 

    Google Scholar
     

  • Sheng, L. et al. Spin wave propagation in a ferrimagnetic skinny movie with perpendicular magnetic anisotropy. Appl. Phys. Lett. 117, 232407 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wojewoda, O. et al. Propagation of spin waves via a Néel area wall. Appl. Phys. Lett. 117, 022405 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mikhailov, A. V. & Yaremchuk, A. I. Compelled movement of a website wall within the discipline of a spin wave. JETP Lett. 39, 354–357 (1984).


    Google Scholar
     

  • Kishine, J.-I. & Ovchinnikov, A. S. Adiabatic and nonadiabatic spin-transfer torques within the current-driven magnetic area wall movement. Phys. Rev. B 81, 134405 (2010).

    Article 

    Google Scholar
     

  • Burrowes, C. et al. Non-adiabatic spin-torques in slender magnetic area partitions. Nat. Phys. 6, 17–21 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Caretta, L. et al. Relativistic kinematics of a magnetic soliton. Science 370, 1438–1442 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X.-G., Guo, G.-H., Nie, Y.-Z., Zhang, G.-F. & Li, Z.-X. Area wall movement induced by the magnonic spin present. Phys. Rev. B 86, 054445 (2012).

    Article 

    Google Scholar
     

  • Chang, L.-J. et al. Ferromagnetic area partitions as spin wave filters and the interaction between area partitions and spin waves. Sci. Rep. 8, 3910 (2018).

    Article 

    Google Scholar
     

  • Wang, X.-G., Guo, G.-H., Zhang, G.-F., Nie, Y.-Z. & Xia, Q.-L. Spin-wave resonance reflection and spin-wave induced area wall displacement. J. Appl. Phys. 113, 213904 (2013).

    Article 

    Google Scholar
     

  • Han, D.-S. et al. Magnetic domain-wall movement by propagating spin waves. Appl. Phys. Lett. 94, 112502 (2009).

    Article 

    Google Scholar
     

  • Search engine marketing, S.-M., Lee, H.-W., Kohno, H. & Lee, Okay.-J. Magnetic vortex wall movement pushed by spin waves. Appl. Phys. Lett. 98, 012514 (2011).

    Article 

    Google Scholar
     

  • Kim, J. S. et al. Interplay between propagating spin waves and area partitions on a ferromagnetic nanowire. Phys. Rev. B 85, 174428 (2012).

    Article 

    Google Scholar
     

  • Risinggård, V., Tveten, E. G., Brataas, A. & Linder, J. Equations of movement and frequency dependence of magnon-induced area wall movement. Phys. Rev. B 96, 174441 (2017).

    Article 

    Google Scholar
     

  • Kim, Okay.-W. et al. Unidirectional magnon-driven area wall movement as a result of interfacial Dzyaloshinskii-Moriya interplay. Phys. Rev. Lett. 122, 147202 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Torrejon, J. et al. Unidirectional thermal results in current-induced area wall movement. Phys. Rev. Lett. 109, 106601 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Shokr, Y. A. et al. Steering of magnetic area partitions by single ultrashort laser pulses. Phys. Rev. B 99, 214404 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Woo, S., Delaney, T. & Seashore, G. S. D. Magnetic area wall depinning assisted by spin wave bursts. Nat. Phys. 13, 448–454 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hämäläinen, S. J., Madami, M., Qin, H., Gubbiotti, G. & van Dijken, S. Management of spin-wave transmission by a programmable area wall. Nat. Commun. 9, 4853 (2018).

    Article 

    Google Scholar
     

  • Banerjee, C. et al. Magnonic band construction in a Co/Pd stripe area system investigated by Brillouin mild scattering and micromagnetic simulations. Phys. Rev. B 96, 024421 (2017).

    Article 

    Google Scholar
     

  • Liu, C. et al. Present-controlled propagation of spin waves in antiparallel, coupled domains. Nat. Nanotechnol. 14, 691–697 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Soumah, L. et al. Extremely-low damping insulating magnetic skinny movies get perpendicular. Nat. Commun. 9, 3355 (2018).

    Article 

    Google Scholar
     

  • Fakhrul, T. et al. Magneto-optical Bi:YIG movies with excessive determine of advantage for nonreciprocal photonics. Adv. Decide. Mater. 7, 1900056 (2019).

    Article 

    Google Scholar
     

  • Callen, H. On growth-induced anisotropy in garnet crystals. Mater. Res. Bull. 6, 931–938 (1971).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, R., Samantaray, B. & Hossain, Z. Ferromagnetic resonance research of pressure tuned Bi:YIG movies. J. Phys. Condens. Matter 31, 435802 (2019).

  • Bailleul, M., Olligs, D., Fermon, C. & Demokritov, S. O. J. E. L. Spin waves propagation and confinement in conducting movies on the micrometer scale. Europhys. Lett. 56, 741–747 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Vlaminck, V. & Bailleul, M. Spin-wave transduction on the submicrometer scale: experiment and modeling. Phys. Rev. B 81, 014425 (2010).

    Article 

    Google Scholar
     

  • Collet, M. et al. Era of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque. Nat. Commun. 7, 10377 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & van Wees, B. J. Lengthy-distance transport of magnon spin data in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).

    Article 

    Google Scholar
     

  • Oh, S.-H. et al. Coherent terahertz spin-wave emission related to ferrimagnetic area wall dynamics. Phys. Rev. B 96, 100407 (2017).

    Article 

    Google Scholar
     

  • Cheng, Y., Chen, Okay. & Zhang, S. Large magneto-spin-Seebeck impact and magnon switch torques in insulating spin valves. Appl. Phys. Lett. 112, 052405 (2018).

    Article 

    Google Scholar
     

  • Wuth, C., Lendecke, P. & Meier, G. Temperature-dependent dynamics of stochastic domain-wall depinning in nanowires. J. Phys. Condens. Matter 24, 024207 (2012).

  • Nguyen, V. D. et al. Elementary depinning processes of magnetic area partitions underneath fields and currents. Sci. Rep. 4, 6509 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Avci, C. O. et al. Interface-driven chiral magnetism and current-driven area partitions in insulating magnetic garnets. Nat. Nanotechnol. 14, 561–566 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Caretta, L. et al. Interfacial Dzyaloshinskii-Moriya interplay arising from rare-earth orbital magnetism in insulating magnetic oxides. Nat. Commun. 11, 1090 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Duan, Z. et al. Nanowire spin torque oscillator pushed by spin orbit torques. Nat. Commun. 5, 5616 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Demidov, V. E. et al. Magnetic nano-oscillator pushed by pure spin present. Nat. Mater. 11, 1028–1031 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *