Present and potential methods for advancing the focused supply of CRISPR/Cas system by way of extracellular vesicles | Journal of Nanobiotechnology


  • Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, Mangan PA, Kulikovskaya I, Gupta M, Chen F, et al. CRISPR-engineered T cells in sufferers with refractory most cancers. Science. 2020;367:7365.

    Article 

    Google Scholar
     

  • Awan MJA, Pervaiz Ok, Rasheed A, Amin I, Saeed NA, Dhugga KS, Mansoor S. Genome edited wheat- present advances for the second inexperienced revolution. Biotechnol Adv. 2022;60:108006.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eş I, Gavahian M, Marti-Quijal FJ, Lorenzo JM, Mousavi Khaneghah A, Tsatsanis C, Kampranis SC, Barba FJ. The applying of the CRISPR-Cas9 genome modifying equipment in meals and agricultural science: present standing, future views, and related challenges. Biotechnol Adv. 2019;37:410–21.

    Article 
    PubMed 

    Google Scholar
     

  • Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 advanced. Nature. 2015;517:583–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang HX, Li M, Lee CM, Chakraborty S, Kim HW, Bao G, Leong KW. CRISPR/Cas9-based genome modifying for illness modeling and remedy: challenges and alternatives for nonviral supply. Chem Rev. 2017;117:9874–906.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R. Exosomes facilitate therapeutic concentrating on of oncogenic KRAS in pancreatic most cancers. Nature. 2017;546:498–503.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Z, Shi J, Xie J, Wang Y, Solar J, Liu T, Zhao Y, Zhao X, Wang X, Ma Y, et al. Massive-scale era of practical mRNA-encapsulating exosomes by way of mobile nanoporation. Nat Biomed Eng. 2020;4:69–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug supply. Adv Drug Deliv Rev. 2016;106:148–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang Y, Xu X, Xu L, Iqbal Z, Ouyang Ok, Zhang H, Wen C, Duan L, Xia J. Chondrocyte-specific genomic modifying enabled by hybrid exosomes for osteoarthritis therapy. Theranostics. 2022;12:4866–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nassar W, El-Ansary M, Sabry D, Mostafa MA, Fayad T, Kotb E, Temraz M, Saad AN, Essa W, Adel H. Umbilical twine mesenchymal stem cells derived extracellular vesicles can safely ameliorate the development of continual kidney ailments. Biomater Res. 2016;20:21.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dooley Ok, McConnell RE, Xu Ok, Lewis ND, Haupt S, Youniss MR, Martin S, Sia CL, McCoy C, Moniz RJ, et al. A flexible platform for producing engineered extracellular vesicles with outlined therapeutic properties. Mol Ther. 2021;29:1729–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gopalan D, Pandey A, Udupa N, Mutalik S. Receptor particular, stimuli responsive and subcellular focused approaches for efficient remedy of Alzheimer: function of floor engineered nanocarriers. J Management Launch. 2020;319:183–200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oliveira FD, Castanho MARB, Neves V. Exosomes and mind metastases: a evaluation on their function and potential purposes. Int J Mol Sci. 2021;22:10899.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu X, Liang Y, Li X, Ouyang Ok, Wang M, Cao T, Li W, Liu J, Xiong J, Li B, et al. Exosome-mediated supply of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration. Biomaterials. 2021;269:120539.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sledzinski P, Dabrowska M, Nowaczyk M, Olejniczak M. Paving the way in which in the direction of exact and protected CRISPR genome modifying. Biotechnol Adv. 2021;49:107737.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang F, Wang L, Zou X, Duan S, Li Z, Deng Z, Luo J, Lee SY, Chen S. Advances in CRISPR-Cas techniques for RNA concentrating on, monitoring and modifying. Biotechnol Adv. 2019;37:708–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo N, Li J, Chen Y, Xu Y, Wei Y, Lu J, Dong R. Hepatic stellate cell reprogramming by way of exosome-mediated CRISPR/dCas9-VP64 supply. Drug Deliv. 2021;28:10–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Y, Wu J, Gu W, Huang Y, Tong Z, Huang L, Tan J. Exosome-liposome hybrid nanoparticles ship CRISPR/Cas9 system in MSCs. Adv Sci. 2018;5:1700611.

    Article 

    Google Scholar
     

  • Xu Q, Zhang Z, Zhao L, Qin Y, Cai H, Geng Z, Zhu X, Zhang W, Zhang Y, Tan J, et al. Tropism-facilitated supply of CRISPR/Cas9 system with chimeric antigen receptor-extracellular vesicles towards B-cell malignancies. J Management Launch. 2020;326:455–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen C, Solar M, Wang J, Su L, Lin J, Yan X. Lively cargo loading into extracellular vesicles: highlights the heterogeneous encapsulation behaviour. J Extracell Vesicles. 2021;10:e12163.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McAndrews KM, Xiao F, Chronopoulos A, LeBleu VS, Kugeratski FG, Kalluri R. Exosome-mediated supply of CRISPR/Cas9 for concentrating on of oncogenic Kras(G12D) in pancreatic most cancers. Life Sci Alliance. 2021;4:e202000875.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhuang J, Tan J, Wu C, Zhang J, Liu T, Fan C, Li J, Zhang Y. Extracellular vesicles engineered with valency-controlled DNA nanostructures ship CRISPR/Cas9 system for gene remedy. Nucleic Acids Res. 2020;48:8870–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gee P, Lung MSY, Okuzaki Y, Sasakawa N, Iguchi T, Makita Y, Hozumi H, Miura Y, Yang LF, Iwasaki M. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nat Commun. 2020;11:1334.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bloomer H, Khirallah J, Li Y, Xu Q. CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome modifying in mammalian cells. Adv Drug Deliv Rev. 2022;181:114087.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo N, Li J, Chen Y, Xu Y, Wei Y, Lu J, Dong R. Hepatic stellate cell reprogramming by way of exosome-mediated CRISPR/dCas9-VP64 supply. Drug Deliv. 2021;28:10–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanada M, Kim BD, Hardy JW, Ronald JA, Bachmann MH, Bernard MP, Perez GI, Zarea AA, Ge TJ, Withrow A, et al. Microvesicle-mediated supply of minicircle DNA leads to efficient gene-directed enzyme prodrug most cancers remedy. Mol Most cancers Ther. 2019;18:2331–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly JJ, Saee-Marand M, Nyström NN, Evans MM, Chen Y, Martinez FM, Hamilton AM, Ronald JA. Protected harbor-targeted CRISPR-Cas9 homology-independent focused integration for multimodality reporter gene-based cell monitoring. Sci Adv. 2021. https://doi.org/10.1126/sciadv.abc3791.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Brien Ok, Breyne Ok, Ughetto S, Laurent LC, Breakefield XO. RNA supply by extracellular vesicles in mammalian cells and its purposes. Nat Rev Mol Cell Biol. 2020;21:585–606.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, Zhou X, Wei M, Gao X, Zhao L, Shi R, Solar W, Duan Y, Yang G, Yuan L. In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9. Nano Lett. 2019;19:19–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Usman WM, Pham TC, Kwok YY, Vu LT, Ma V, Peng B, Chan YS, Wei L, Chin SM, Azad A, et al. Environment friendly RNA drug supply utilizing crimson blood cell extracellular vesicles. Nat Commun. 2018;9:2359.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohno S, Takanashi M, Sudo Ok, Ueda S, Ishikawa A, Matsuyama N, Fujita Ok, Mizutani T, Ohgi T, Ochiya T, et al. Systemically injected exosomes focused to EGFR ship antitumor microRNA to breast most cancers cells. Mol Ther. 2013;21:185–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hood JL, Scott MJ, Wickline SA. Maximizing exosome colloidal stability following electroporation. Anal Biochem. 2014;448:41–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kooijmans SAA, Stremersch S, Braeckmans Ok, de Smedt SC, Hendrix A, Wooden MJA, Schiffelers RM, Raemdonck Ok, Vader P. Electroporation-induced siRNA precipitation obscures the effectivity of siRNA loading into extracellular vesicles. J Management Launch. 2013;172:229–38.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Lively loading into extracellular vesicles considerably improves the mobile uptake and photodynamic impact of porphyrins. J Management Launch. 2015;205:35–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Montagna C, Petris G, Casini A, Maule G, Franceschini GM, Zanella I, Conti L, Arnoldi F, Burrone OR, Zentilin L, et al. VSV-G-enveloped vesicles for traceless supply of CRISPR-Cas9. Mol Ther Nucleic Acids. 2018;12:453–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campbell LA, Coke LM, Richie CT, Fortuno LV, Park AY, Harvey BK. Gesicle-mediated supply of CRISPR/Cas9 ribonucleoprotein advanced for inactivating the HIV provirus. Mol Ther. 2019;27:151–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen R, Huang H, Liu H, Xi J, Ning J, Zeng W, Shen C, Zhang T, Yu G, Xu Q, et al. Pal or foe? proof signifies endogenous exosomes can ship practical gRNA and Cas9 protein. Small. 2019;15:e1902686.

    Article 
    PubMed 

    Google Scholar
     

  • Kim SM, Yang Y, Oh SJ, Hong Y, Search engine marketing M, Jang M. Most cancers-derived exosomes as a supply platform of CRISPR/Cas9 confer most cancers cell tropism-dependent concentrating on. J Management Launch. 2017;266:8–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lainšček D, Kadunc L, Keber MM, Bratkovič IH, Romih R, Jerala R. Supply of a man-made transcription regulator dCas9-VPR by extracellular vesicles for therapeutic gene activation. ACS Synth Biol. 2018;7:2715–25.

    Article 
    PubMed 

    Google Scholar
     

  • Yao XG, Lyu P, Yoo Ok, Yadav MK, Singh R, Atala A, Lu BS. Engineered extracellular vesicles as versatile ribonucleoprotein supply automobiles for environment friendly and protected CRISPR genome modifying. J Extracell Vesicles. 2021;10:14.

    Article 

    Google Scholar
     

  • Wan T, Zhong J, Pan Q, Zhou T, Ping Y, Liu X. Exosome-mediated supply of Cas9 ribonucleoprotein complexes for tissue-specific gene remedy of liver ailments. Sci Adv. 2022;8:eabp9435.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Majeau N, Fortin-Archambault A, Gérard C, Rousseau J, Yaméogo P, Tremblay JP. Serum extracellular vesicles for supply of CRISPR-CAS9 ribonucleoproteins to switch the dystrophin gene. Mol Ther. 2022. https://doi.org/10.1016/j.ymthe.2022.05.023.

    Article 
    PubMed 

    Google Scholar
     

  • Ye Y, Zhang X, Xie F, Xu B, Xie P, Yang T, Shi Q, Zhang C-Y, Zhang Y, Chen J, et al. An engineered exosome for delivering sgRNA:Cas9 ribonucleoprotein advanced and genome modifying in recipient cells. Biomater Sci. 2020;8:2966–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao X, Lyu P, Yoo Ok, Yadav MK, Singh R, Atala A, Lu B. Engineered extracellular vesicles as versatile ribonucleoprotein supply automobiles for environment friendly and protected CRISPR genome modifying. J Extracell Vesicles. 2021;10: e12076.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sterzenbach U, Putz U, Low L-H, Silke J, Tan S-S, Howitt J. Engineered exosomes as automobiles for biologically lively proteins. Mol Ther. 2017;25:1269–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osteikoetxea X, Silva A, Lázaro-Ibáñez E, Salmond N, Shatnyeva O, Stein J, Schick J, Wren S, Lindgren J, Firth M, et al. Engineered Cas9 extracellular vesicles as a novel gene modifying software. J Extracell Vesicles. 2022;11:e12225.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, Yu J, Kadungure T, Beyene J, Zhang H, Lu Q. ARMMs as a flexible platform for intracellular supply of macromolecules. Nat Commun. 2018;9:960.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang X, Xu Q, Zi Z, Liu Z, Wan C, Crisman L, Shen J, Liu X. Programmable extracellular vesicles for macromolecule supply and genome modifications. Dev Cell. 2020;55:784-801.e789.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Busatto S, Iannotta D, Walker SA, Di Marzio L, Wolfram J. A easy and fast technique for loading proteins in extracellular vesicles. Prescribed drugs. 2021;14:356.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitley JA, Kim S, Lou L, Ye C, Alsaidan OA, Sulejmani E, Cai J, Desrochers EG, Beharry Z, Rickman CB, et al. Encapsulating Cas9 into extracellular vesicles by protein myristoylation. J Extracell Vesicles. 2022;11:e12196.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li T, Zhang L, Lu T, Zhu T, Feng C, Gao N, Liu F, Yu J, Chen Ok, Zhong J, et al. Engineered extracellular vesicle-delivered CRISPR/CasRx as a novel RNA modifying software. Adv Sci. 2023;10:e2206517.

    Article 

    Google Scholar
     

  • Votteler J, Ogohara C, Yi S, Hsia Y, Nattermann U, Belnap DM, King NP, Sundquist WI. Designed proteins induce the formation of nanocage-containing extracellular vesicles. Nature. 2016;540:292–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan J, Shun MC, Zhang Y, Hao C, Skowronski J. HIV-1 Vpr counteracts HLTF-mediated restriction of HIV-1 an infection in T cells. Proc Natl Acad Sci USA. 2019;116:9568–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng L, Hill AF. Therapeutically harnessing extracellular vesicles. Nat Rev Drug Discov. 2022;21:379–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doudna JA. The promise and problem of therapeutic genome modifying. Nature. 2020;578:229–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mu W, Tang N, Cheng C, Solar W, Wei X, Wang H. In vitro transcribed sgRNA causes cell loss of life by inducing interferon launch. Protein Cell. 2019;10:461–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB, et al. Chemically modified information RNAs improve CRISPR-Cas genome modifying in human main cells. Nat Biotechnol. 2015;33:985–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ke Y, Ghalandari B, Huang S, Li S, Huang C, Zhi X, Cui D, Ding X. 2’-O-Methyl modified information RNA promotes the one nucleotide polymorphism (SNP) discrimination potential of CRISPR-Cas12a techniques. Chem Sci. 2022;13:2050–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Holmstrom E, Zhang J, Yu P, Wang J, Dyba MA, Chen D, Ying J, Lockett S, Nesbitt DJ, et al. Synthesis and purposes of RNAs with position-selective labelling and mosaic composition. Nature. 2015;522:368–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Developments Cell Biol. 2015;25:364–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamilton JR, Tsuchida CA, Nguyen DN, Shy BR, McGarrigle ER, Sandoval Espinoza CR, Carr D, Blaeschke F, Marson A, Doudna JA. Focused supply of CRISPR-Cas9 and transgenes permits advanced immune cell engineering. Cell Rep. 2021;35:109207.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrmann IK, Wooden MJA, Fuhrmann G. Extracellular vesicles as a next-generation drug supply platform. Nat Nanotechnol. 2021;16:748–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye YY, Zhang X, Xie F, Xu B, Xie P, Yang T, Shi Q, Zhang CY, Zhang YJ, Chen JN, et al. An engineered exosome for delivering sgRNA:Cas9 ribonucleoprotein advanced and genome modifying in recipient cells. Biomater Sci. 2020;8:2966–76.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye Y, Shi Q, Yang T, Xie F, Zhang X, Xu B, Fang J, Chen J, Zhang Y, Li J. In vivo visualized monitoring of tumor-derived extracellular vesicles utilizing CRISPR-Cas9 system. Technol Most cancers Res Deal with. 2022;21:15330338221085370.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mangeot PE, Risson V, Fusil F, Marnef A, Laurent E, Blin J, Mournetas V, Massouridès E, Sohier TJM, Corbin A, et al. Genome modifying in main cells and in vivo utilizing viral-derived nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nat Commun. 2019;10:45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu X, Badawi M, Pomeroy S, Sutaria DS, Xie Z, Baek A, Jiang J, Elgamal OA, Mo X, Perle KL, et al. Complete toxicity and immunogenicity research reveal minimal results in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. J Extracell Vesicles. 2017;6:1324730.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Escudier B, Dorval T, Chaput N, André F, Caby MP, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S, et al. Vaccination of metastatic melanoma sufferers with autologous dendritic cell (DC) derived-exosomes: outcomes of thefirst part I medical trial. J Transl Med. 2005;3:10.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang Q, Ren Y, Mu J, Egilmez NK, Zhuang X, Deng Z, Zhang L, Yan J, Miller D, Zhang H-G. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to ship therapeutic brokers to inflammatory tumor websites. Most cancers Res. 2015;75:2520–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Yu Y, Zhu G, Zeng L, Xu S, Cheng H, Ouyang Z, Chen J, Pathak JL, Wu L, et al. The rising function of plant-derived exosomes-like nanoparticles in immune regulation and periodontitis therapy. Entrance Immunol. 2022;13:896745.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wooden MJ. Supply of siRNA to the mouse mind by systemic injection of focused exosomes. Nat Biotechnol. 2011;29:341–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sato YT, Umezaki Ok, Sawada S, Mukai S-A, Sasaki Y, Harada N, Shiku H, Akiyoshi Ok. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep. 2016;6:21933.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lengthy Q, Zheng P, Zheng X, Li W, Hua L, Yang Z, Huang W, Ma Y. Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy. Adv Drug Deliv Rev. 2022;186:114321.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie F, Su P, Pan T, Zhou X, Li H, Huang H, Wang A, Wang F, Huang J, Yan H, et al. Engineering extracellular vesicles enriched with palmitoylated ACE2 as COVID-19 remedy. Adv Mater. 2021;33:e2103471.

    Article 
    PubMed 

    Google Scholar
     

  • Xu H, Wang B, Ono M, Kagita A, Fujii Ok, Sasakawa N, Ueda T, Gee P, Nishikawa M, Nomura M, et al. Focused disruption of HLA genes by way of CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell. 2019;24:566-578.e567.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wongrakpanich A, Adamcakova-Dodd A, Xie W, Joshi VB, Mapuskar KA, Geary SM, Spitz DR, Thorne PS, Salem AK. The absence of CpG in plasmid DNA-chitosan polyplexes enhances transfection efficiencies and reduces inflammatory responses in murine lungs. Mol Pharm. 2014;11:1022–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gupta R, Ghosh A, Chakravarti R, Singh R, Ravichandiran V, Swarnakar S, Ghosh D. Cas13d: a brand new molecular scissor for transcriptome engineering. Entrance Cell Dev Biol. 2022;10:866800.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu S, Cheng Q, Wei T, Yu X, Johnson LT, Farbiak L, Siegwart DJ. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA supply and CRISPR-Cas gene modifying. Nat Mater. 2021;20:701–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsumoto A, Takahashi Y, Chang HY, Wu YW, Yamamoto A, Ishihama Y, Takakura Y. Blood concentrations of small extracellular vesicles are decided by a stability between plentiful secretion and speedy clearance. J Extracell Vesicles. 2020;9:1696517.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smyth T, Kullberg M, Malik N, Smith-Jones P, Graner MW, Anchordoquy TJ. Biodistribution and supply effectivity of unmodified tumor-derived exosomes. J Management Launch. 2015;199:145–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G, Vader P. Challenges and instructions in finding out cell-cell communication by extracellular vesicles. Nat Rev Mol Cell Biol. 2022;23:369–82.

    Article 
    PubMed 

    Google Scholar
     

  • Yang Y, Tai X, Shi Ok, Ruan S, Qiu Y, Zhang Z, Xiang B, He Q. A brand new idea of enhancing immuno-chemotherapeutic results towards B16F10 tumor by way of systemic administration by taking benefits of the limitation of EPR impact. Theranostics. 2016;6:2141–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kooijmans SAA, Fliervoet LAL, Van Der Meel R, Fens MHAM, Heijnen HFG, Van Bergen EHPMP, Vader P, Schiffelers RM. PEGylated and focused extracellular vesicles show enhanced cell specificity and circulation time. J Management Launch. 2016;224:77–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baek S, Jeon M, Jung HN, Lee W, Hwang JE, Lee JS, Choi Y, Im HJ. M1 macrophage-derived exosome-mimetic nanovesicles with an enhanced most cancers concentrating on bbility. ACS Appl Bio Mater. 2022;5:2862–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohamed M, Abu Lila AS, Shimizu T, Alaaeldin E, Hussein A, Sarhan HA, Szebeni J, Ishida T. PEGylated liposomes: immunological responses. Sci Technol Adv Mater. 2019;20:710–24.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lathwal S, Yerneni SS, Boye S, Muza UL, Takahashi S, Sugimoto N, Lederer A, Das SR, Campbell PG, Matyjaszewski Ok. Engineering exosome polymer hybrids by atom switch radical polymerization. Proc Natl Acad Sci U S A. 2021;118:e2020241118.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di J, Gao X, Du Y, Zhang H, Gao J, Zheng A. Measurement, form, cost and “stealthy” floor: provider properties have an effect on the drug circulation time in vivo. Asian J Pharm Sci. 2021;16:444–58.

    Article 
    PubMed 

    Google Scholar
     

  • Logtenberg MEW, Scheeren FA, Schumacher TN. The CD47-SIRPα immune checkpoint. Immunity. 2020;52:742–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang KL, Wang YJ, Solar J, Zhou J, Xing C, Huang G, Li J, Yang H. Synthetic chimeric exosomes for anti-phagocytosis and focused most cancers remedy. Chem Sci. 2019;10:1555–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma L, Zhu M, Gai J, Li G, Chang Q, Qiao P, Cao L, Chen W, Zhang S, Wan Y. Preclinical growth of a novel CD47 nanobody with much less toxicity and enhanced anti-cancer therapeutic potential. J Nanobiotechnology. 2020;18:12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nie W, Wu G, Zhang J, Huang LL, Ding J, Jiang A, Zhang Y, Liu Y, Li J, Pu Ok, et al. Responsive exosome nano-bioconjugates for synergistic most cancers remedy. Angew Chem Int Ed Engl. 2020;59:2018–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pham TC, Jayasinghe MK, Pham TT, Yang Y, Wei L, Usman WM, Chen H, Pirisinu M, Gong J, Kim S, et al. Covalent conjugation of extracellular vesicles with peptides and nanobodies for focused therapeutic supply. J Extracell Vesicles. 2021;10:e12057.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parada N, Romero-Trujillo A, Georges N, Alcayaga-Miranda F. Camouflage methods for therapeutic exosomes evasion from phagocytosis. J Adv Res. 2021;31:61–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martins ÁM, Ramos CC, Freitas D, Reis CA. Glycosylation of most cancers extracellular vesicles: seize methods, practical roles and potential medical purposes. Cells. 2021;10:109.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams C, Royo F, Aizpurua-Olaizola O, Pazos R, Boons G-J, Reichardt N-C, Falcon-Perez JM. Glycosylation of extracellular vesicles: present data, instruments and medical views. J Extracell Vesicles. 2018;7:1442985.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horrevorts SK, Stolk DA, van de Ven R, Hulst M, van Het Hof B, Duinkerken S, Heineke MH, Ma W, Dusoswa SA, Nieuwland R, et al. Glycan-modified apoptotic melanoma-derived extracellular vesicles as antigen supply for anti-tumor vaccination. Cancers. 2019;11:1266.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Royo F, Cossío U, Ruiz de Angulo A, Llop J, Falcon-Perez JM. Modification of the glycosylation of extracellular vesicles alters their biodistribution in mice. Nanoscale. 2019;11:1531–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dusoswa SA, Horrevorts SK, Ambrosini M, Kalay H, Paauw NJ, Nieuwland R, Pegtel MD, Würdinger T, Van Kooyk Y, Garcia-Vallejo JJ. Glycan modification of glioblastoma-derived extracellular vesicles enhances receptor-mediated concentrating on of dendritic cells. J Extracell Vesicles. 2019;8:1648995.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segawa Ok, Nagata S. An apoptotic ‘eat me’ sign: phosphatidylserine publicity. Developments Cell Biol. 2015;25:639–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J, Yu C, Zhuang J, Qi W, Jiang J, Liu X, Zhao W, Cao Y, Wu H, Qi J, et al. The function of phosphatidylserine on the membrane in immunity and blood coagulation. Biomark Res. 2022;10:4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang JH, Forterre AV, Zhao J, Frimannsson DO, Delcayre A, Antes TJ, Efron B, Jeffrey SS, Pegram MD, Matin AC. Anti-HER2 scFv-directed extracellular vesicle-mediated mRNA-based gene supply inhibits progress of HER2-positive human breast tumor xenografts by prodrug activation. Mol Most cancers Ther. 2018;17:1133–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakase I, Noguchi Ok, Aoki A, Takatani-Nakase T, Fujii I, Futaki S. Arginine-rich cell-penetrating peptide-modified extracellular vesicles for lively macropinocytosis induction and environment friendly intracellular supply. Sci Rep. 2017;7:1991.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kooijmans SAA, Gitz-Francois J, Schiffelers RM, Vader P. Recombinant phosphatidylserine-binding nanobodies for concentrating on of extracellular vesicles to tumor cells: a plug-and-play method. Nanoscale. 2018;10:2413–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moritani Y, S-iM N, Morita I, Akiyoshi Ok. Direct integration of cell-free-synthesized connexin-43 into liposomes and hemichannel formation. FEBS J. 2010;277:3343–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng L, Zhang X, Tang J, Lv Q, Liu J. Gene-engineered exosomes-thermosensitive liposomes hybrid nanovesicles by the blockade of CD47 sign for mixed photothermal remedy and most cancers immunotherapy. Biomaterials. 2021;275:120964.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han Z, Lv W, Li Y, Chang J, Zhang W, Liu C, Solar J. Enhancing tumor concentrating on of exosomal membrane-coated polymeric nanoparticles by conjugation with aptamers. ACS Appl Bio Mater. 2020;3:2666–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tong S, Moyo B, Lee CM, Leong Ok, Bao G. Engineered supplies for in vivo supply of genome-editing equipment. Nat Rev Mater. 2019;4:726–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Longatti A, Schindler C, Collinson A, Jenkinson L, Matthews C, Fitzpatrick L, Blundy M, Minter R, Vaughan T, Shaw M, et al. Excessive affinity single-chain variable fragments are particular and versatile concentrating on motifs for extracellular vesicles. Nanoscale. 2018;10:14230–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer C, Losacco J, Stickney Z, Li L, Marriott G, Lu B. Pseudotyping exosomes for enhanced protein supply in mammalian cells. Int J Nanomed. 2017;12:3153–70.

    Article 
    CAS 

    Google Scholar
     

  • Heath N, Osteikoetxea X, de Oliveria TM, Lázaro-Ibáñez E, Shatnyeva O, Schindler C, Tigue N, Mayr LM, Dekker N, Overman R, et al. Endosomal escape enhancing compounds facilitate practical supply of extracellular vesicle cargo. Nanomedicine. 2019;14:2799–814.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakase I, Futaki S. Mixed therapy with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic supply of exosomes. Sci Rep. 2015;5:10112.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noguchi Ok, Obuki M, Sumi H, Klußmann M, Morimoto Ok, Nakai S, Hashimoto T, Fujiwara D, Fujii I, Yuba E, et al. Macropinocytosis-inducible extracellular vesicles modified with antimicrobial protein CAP18-derived cell-penetrating peptides for environment friendly intracellular supply. Mol Pharm. 2021;18:3290–301.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramakrishna S, Kwaku Dad A-B, Beloor J, Gopalappa R, Lee S-Ok, Kim H. Gene disruption by cell-penetrating peptide-mediated supply of Cas9 protein and information RNA. Genome Res. 2014;24:1020–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lostalé-Seijo I, Louzao I, Juanes M, Montenegro J. Peptide/Cas9 nanostructures for ribonucleoprotein cell membrane transport and gene version. Chem Sci. 2017;8:7923–31.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Huang M, Jiang L, Li T, Wang J, Zhao L, Zhou J. Autophagy inhibitors improve biomolecular supply effectivity of extracellular vesicles. Biochem Biophys Res Commun. 2022;603:130–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pei W, Li X, Bi R, Zhang X, Zhong M, Yang H, Zhang Y, Lv Ok. Exosome membrane-modified M2 macrophages focused nanomedicine: therapy for allergic bronchial asthma. J Management Launch. 2021;338:253–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Somiya M, Kuroda S. Reporter gene assay for membrane fusion of extracellular vesicles. J Extracell Vesicles. 2021;10:e12171.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim Ok, Park J, Sohn Y, Oh CE, Park JH, Yuk JM, Yeon JH. Stability of plant leaf-derived extracellular vesicles in line with preservative and storage temperature. Pharmaceutics. 2022;14:457.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan F, Li YM, Wang Z. Preserving extracellular vesicles for biomedical purposes: consideration of storage stability earlier than and after isolation. Drug Deliv. 2021;28:1501–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Görgens A, Corso G, Hagey DW, Jawad Wiklander R, Gustafsson MO, Felldin U, Lee Y, Bostancioglu RB, Sork H, Liang X, et al. Identification of storage circumstances stabilizing extracellular vesicles preparations. J Extracell Vesicles. 2022;11: e12238.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gelibter S, Marostica G, Mandelli A, Siciliani S, Podini P, Finardi A, Furlan R. The affect of storage on extracellular vesicles: a scientific examine. J Extracell Vesicles. 2022;11: e12162.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evitt NH, Mascharak S, Altman RB. Human germline CRISPR-Cas modification: towards a regulatory framework. Am J Bioeth. 2015;15:25–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sancho-Albero M, Navascués N, Mendoza G, Sebastián V, Arruebo M, Martín-Duque P, Santamaría J. Exosome origin determines cell concentrating on and the switch of therapeutic nanoparticles in the direction of goal cells. J Nanobiotechnol. 2019;17:16.

    Article 

    Google Scholar
     

  • Wiklander OP, Nordin JZ, O’Loughlin A, Gustafsson Y, Corso G, Mäger I, Vader P, Lee Y, Sork H, Seow Y, et al. Extracellular vesicle in vivo biodistribution is decided by cell supply, route of administration and concentrating on. J Extracell Vesicles. 2015;4:26316.

    Article 
    PubMed 

    Google Scholar
     

  • Ferreira JV, Da Rosa SA, Ramalho J, Máximo Carvalho C, Cardoso MH, Pintado P, Carvalho AS, Beck HC, Matthiesen R, Zuzarte M, et al. LAMP2A regulates the loading of proteins into exosomes. Sci Adv. 2022;8:eabm1140.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogt S, Bobbili MR, Stadlmayr G, Stadlbauer Ok, Kjems J, Rüker F, Grillari J, Wozniak-Knopp G. An engineered CD81-based combinatorial library for choosing recombinant binders to cell floor proteins: laminin binding CD81 enhances mobile uptake of extracellular vesicles. J Extracell Vesicles. 2021;10: e12139.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han C, Kang H, Yi J, Kang M, Lee H, Kwon Y, Jung J, Lee J, Park J. Single-vesicle imaging and co-localization evaluation for tetraspanin profiling of particular person extracellular vesicles. J Extracell Vesicles. 2021;10: e12047.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vidal M. Exosomes and GPI-anchored proteins: considered pairs for investigating biomarkers from physique fluids. Adv Drug Deliv Rev. 2020;161–162:110–23.

    Article 
    PubMed 

    Google Scholar
     

  • Rountree RB, Mandl SJ, Nachtwey JM, Dalpozzo Ok, Do L, Lombardo JR, Schoonmaker PL, Brinkmann Ok, Dirmeier U, Laus R, et al. Exosome concentrating on of tumor antigens expressed by most cancers vaccines can enhance antigen immunogenicity and therapeutic efficacy. Most cancers Res. 2011;71:5235–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng Q, Shi X, Han M, Smbatyan G, Lenz H-J, Zhang Y. Reprogramming exosomes as nanoscale controllers of mobile immunity. J Am Chem Soc. 2018;140:16413–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang G, Zhu Y, Ali DJ, Tian T, Xu H, Si Ok, Solar B, Chen B, Xiao Z. Engineered exosomes for focused co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon most cancers. J Nanobiotechnology. 2020;18:10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, Zhou X, Gao X, Bai D, Dong Y, Solar W, Zhao L, Wei M, Yang X, Yang G, et al. Fusion protein engineered exosomes for focused degradation of particular RNAs in lysosomes: a proof-of-concept examine. J Extracell Vesicles. 2020;9:1816710.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai J, Duan J, Liu R, Du Y, Luo Q, Cui Y, Su Z, Xu J, Xie Y, Lu W. Engineered concentrating on tLyp-1 exosomes as gene remedy vectors for environment friendly supply of siRNA into lung most cancers cells. Asian J Pharm Sci. 2020;15:461–71.

    Article 
    PubMed 

    Google Scholar
     

  • Hung ME, Leonard JN. Stabilization of exosome-targeting peptides by way of engineered glycosylation. J Biol Chem. 2015;290:8166–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng Z, Xu B. Inspiration from the mirror: D-amino acid containing peptides in biomedical approaches. Biomol Ideas. 2016;7:179–87.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomari H, Forouzandeh Moghadam M, Soleimani M. Focused most cancers remedy utilizing engineered exosome as a pure drug supply automobile. Onco Targets Ther. 2018;11:5753–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang G, Kan S, Zhu Y, Feng S, Feng W, Gao S. Engineered exosome-mediated supply of functionally lively miR-26a and its enhanced suppression impact in HepG2 cells. Int J Nanomedicine. 2018;13:585–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Curley N, Levy D, Do MA, Brown A, Stickney Z, Marriott G, Lu B. Sequential deletion of CD63 identifies topologically distinct scaffolds for floor engineering of exosomes in dwelling human cells. Nanoscale. 2020;12:12014–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kooijmans SAA, Aleza CG, Roffler SR, van Solinge WW, Vader P, Schiffelers RM. Show of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell concentrating on. J Extracell Vesicles. 2016;5:31053.

    Article 
    PubMed 

    Google Scholar
     

  • Tian T, Cao L, He C, Ye Q, Liang R, You W, Zhang H, Wu J, Ye J, Tannous BA, et al. Focused supply of neural progenitor cell-derived extracellular vesicles for anti-inflammation after cerebral ischemia. Theranostics. 2021;11:6507–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi X, Cheng Q, Hou T, Han M, Smbatyan G, Lang JE, Epstein AL, Lenz HJ, Zhang Y. Genetically engineered cell-derived nanoparticles for focused breast most cancers immunotherapy. Mol Ther. 2020;28:536–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gulei D, Berindan-Neagoe I. Activation of necroptosis by engineered self tumor-derived exosomes loaded with CRISPR/Cas9. Mol Ther Nucleic Acids. 2019;17:448–51.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kostyushev D, Kostyusheva A, Brezgin S, Smirnov V, Volchkova E, Lukashev A, Chulanov V. Gene modifying by extracellular vesicles. Int J Mol Sci. 2020;21:7362.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu L, Faruqu FN, Liam-Or R, Abu Abed O, Li D, Venner Ok, Errington RJ, Summers H, Wang JT, Al-Jamal KT. Design of experiment (DoE)-driven in vitro and in vivo uptake research of exosomes for pancreatic most cancers supply enabled by copper-free click on chemistry-based labelling. J Extracell Vesicles. 2020;9:1779458.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Qin Z, Solar H, Chen X, Dong J, Shen S, Zheng L, Gu N, Jiang Q. Nanoenzyme engineered neutrophil-derived exosomes attenuate joint damage in superior rheumatoid arthritis by way of regulating inflammatory surroundings. Bioact Mater. 2022;18:1–14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim HY, Kim TJ, Kang L, Kim YJ, Kang MK, Kim J, Ryu JH, Hyeon T, Yoon BW, Ko SB, et al. Mesenchymal stem cell-derived magnetic extracellular nanovesicles for concentrating on and therapy of ischemic stroke. Biomaterials. 2020;243:119942.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Y, Bai L, Guo Ok, Jia Y, Zhang Ok, Liu Q, Wang P, Wang X. Centered ultrasound-augmented concentrating on supply of nanosonosensitizers from homogenous exosomes for enhanced sonodynamic most cancers remedy. Theranostics. 2019;9:5261–81.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi H, Liu C, Lengthy L, Ren Y, Zhang S, Chang X, Qian X, Jia H, Zhao J, Solar J, et al. Blood exosomes endowed with magnetic and concentrating on properties for most cancers remedy. ACS Nano. 2016;10:3323–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar W, Xing C, Zhao L, Zhao P, Yang G, Yuan L. Ultrasound assisted exosomal supply of tissue responsive mRNA for enhanced efficacy and minimized off-target results. Mol Ther Nucleic Acids. 2020;20:558–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ryu JY, Received EJ, Lee HAR, Kim JH, Hui E, Kim HP, Yoon TJ. Ultrasound-activated particles as CRISPR/Cas9 supply system for androgenic alopecia remedy. Biomaterials. 2020;232:119736.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuo C, Zhang J, Lee JH, Jiao J, Cheng D, Liu L, Kim HW, Tao Y, Li M. Spatiotemporal management of CRISPR/Cas9 gene modifying. Sign Transduct Goal Ther. 2021;6:238.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alsaiari SK, Patil S, Alyami M, Alamoudi KO, Aleisa FA, Merzaban JS, Li M, Khashab NM. Endosomal escape and supply of CRISPR/Cas9 genome modifying equipment enabled by nanoscale zeolitic imidazolate framework. J Am Chem Soc. 2018;140:143–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng S, Li X, Liu S, Chen J, Li M, Chew SY, Leong KW, Cheng D. Codelivery of CRISPR-Cas9 and chlorin e6 for spatially managed tumor-specific gene modifying with synergistic drug results. Sci Adv. 2020;6:eabb4005.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, Huang NP, Xiao ZD, Lu ZH, Tannous BA, et al. Floor functionalized exosomes as focused drug supply automobiles for cerebral ischemia remedy. Biomaterials. 2018;150:137–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim GT, You DG, Han HS, Lee H, Shin S, Oh BH, Kumar EKP, Um W, Kim CH, Han S, et al. Bioorthogonally surface-edited extracellular vesicles primarily based on metabolic glycoengineering for CD44-mediated concentrating on of inflammatory ailments. J Extracell Vesicles. 2021;10: e12077.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hong Y, Nam GH, Koh E, Jeon S, Kim GB, Jeong C, Kim DH, Yang Y, Kim IS, Hong Y, et al. Exosome as a automobile for supply of membrane protein therapeutics, PH20, for enhanced tumor penetration and antitumor efficacy. Adv Funct Mater. 2018;28:1703074.

    Article 

    Google Scholar
     

  • Zhu Q, Ling X, Yang Y, Zhang J, Li Q, Niu X, Hu G, Chen B, Li H, Wang Y, et al. Embryonic stem cells-derived exosomes endowed with concentrating on properties as chemotherapeutics supply automobiles for glioblastoma remedy. Adv Sci. 2019;6:1801899.

    Article 

    Google Scholar
     

  • Wu Q, Fu X, Li X, Li J, Han W, Wang Y. Modification of adipose mesenchymal stem cells-derived small extracellular vesicles with fibrin-targeting peptide CREKA for enhanced bone restore. Bioact Mater. 2023;20:208–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang N, Solar N, Deng C. Fast isolation and proteome evaluation of urinary exosome primarily based on double interactions of Fe(3)O(4)@TiO(2)-DNA aptamer. Talanta. 2021;221:121571.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo ZW, Li FX, Liu YW, Rao SS, Yin H, Huang J, Chen CY, Hu Y, Zhang Y, Tan YJ, et al. Aptamer-functionalized exosomes from bone marrow stromal cells goal bone to advertise bone regeneration. Nanoscale. 2019;11:20884–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tamura R, Uemoto S, Tabata Y. Augmented liver concentrating on of exosomes by floor modification with cationized pullulan. Acta Biomater. 2017;57:274–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuo B, Qi H, Lu Z, Chen L, Solar B, Yang R, Zhang Y, Liu Z, Gao X, You A, et al. Alarmin-painted exosomes elicit persistent antitumor immunity in massive established tumors in mice. Nat Commun. 2020;11:1790.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Abreu RC, Fernandes H, Da Costa Martins PA, Sahoo S, Emanueli C, Ferreira L. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nat Rev Cardiol. 2020;17:685–97.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rai A, Fang H, Claridge B, Simpson RJ, Greening DW. Proteomic dissection of huge extracellular vesicle surfaceome unravels interactive floor platform. J Extracell Vesicles. 2021;10:e12164.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li YJ, Wu JY, Liu JH, Xu WJ, Qiu XH, Huang S, Hu XB, Xiang DX. Synthetic exosomes for translational nanomedicine. J Nanobiotechnology. 2021;19:242.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding Y, Li Y, Solar Z, Han X, Chen Y, Ge Y, Mao Z, Wang W. Cell-derived extracellular vesicles and membranes for tissue restore. J Nanobiotechnology. 2021;19:368.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu JY, Li YJ, Hu XB, Huang S, Luo S, Tang T, Xiang DX. Exosomes and biomimetic nanovesicles-mediated anti-glioblastoma remedy: a head-to-head comparability. J Management Launch. 2021;336:510–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee JR, Kyung JW, Kumar H, Kwon SP, Track SY, Han IB, Kim BS. Focused supply of mesenchymal stem cell-derived nanovesicles for spinal twine damage therapy. Int J Mol Sci. 2020;21:4185.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vázquez-Ríos AJ, Molina-Crespo Á, Bouzo BL, López-López R, Moreno-Bueno G, de la Fuente M. Exosome-mimetic nanoplatforms for focused most cancers drug supply. J Nanobiotechnology. 2019;17:85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dehaini D, Wei X, Fang RH, Masson S, Angsantikul P, Luk BT, Zhang Y, Ying M, Jiang Y, Kroll AV, et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv Mater. 2017;29:1606209.

    Article 

    Google Scholar
     

  • Dong X, Gao J, Zhang CY, Hayworth C, Frank M, Wang Z. Neutrophil membrane-derived nanovesicles alleviate irritation to guard mouse mind damage from ischemic stroke. ACS Nano. 2019;13:1272–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu M, Zhao X, Xing H, Liu H, Lang L, Yang T, Xun Z, Wang D, Ding P. Cell-free synthesis of connexin 43-integrated exosome-mimetic nanoparticles for siRNA supply. Acta Biomater. 2019;96:517–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao C, Wu W, Tang H, Jia X, Tang J, Ruan X, Li F, Leong DT, Luo D, Yang D. Self-assembly of stem cell membrane-camouflaged nanocomplex for microRNA-mediated restore of myocardial infarction damage. Biomaterials. 2020;257:120256.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lázaro-Ibáñez E, Faruqu FN, Saleh AF, Silva AM, Tzu-Wen Wang J, Rak J, Al-Jamal KT, Dekker N. Choice of fluorescent, bioluminescent, and radioactive tracers to precisely mirror extracellular vesicle biodistribution in vivo. ACS Nano. 2021;15:3212–27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Track S, Shim MK, Lim S, Moon Y, Yang S, Kim J, Hong Y, Yoon HY, Kim IS, Hwang KY, et al. In situ one-step fluorescence labeling technique of exosomes by way of bioorthogonal click on chemistry for real-time exosome monitoring in vitro and in vivo. Bioconjug Chem. 2020;31:1562–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoon HY, Koo H, Kim Ok, Kwon IC. Molecular imaging primarily based on metabolic glycoengineering and bioorthogonal click on chemistry. Biomaterials. 2017;132:28–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jing B, Gai Y, Qian R, Liu Z, Zhu Z, Gao Y, Lan X, An R. Hydrophobic insertion-based engineering of tumor cell-derived exosomes for SPECT/NIRF imaging of colon most cancers. J Nanobiotechnology. 2021;19:7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strohmeier Ok, Hofmann M, Hauser F, Sivun D, Puthukodan S, Karner A, Sandner G, Le Renard PE, Jacak J, Mairhofer M. CRISPR/Cas9 genome modifying vs over-expression for fluorescent extracellular vesicle-labeling: a quantitative evaluation. Int J Mol Sci. 2021;23:282.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morishita M, Takahashi Y, Nishikawa M, Sano Ok, Kato Ok, Yamashita T, Imai T, Saji H, Takakura Y. Quantitative evaluation of tissue distribution of the B16BL6-derived exosomes utilizing a streptavidin-lactadherin fusion protein and iodine-125-labeled biotin by-product after intravenous injection in mice. J Pharm Sci. 2015;104:705–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verweij FJ, Balaj L, Boulanger CM, Carter DRF, Compeer EB, D’Angelo G, El Andaloussi S, Goetz JG, Gross JC, Hyenne V, et al. The facility of imaging to know extracellular vesicle biology in vivo. Nat Strategies. 2021;18:1013–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Liu S, Xiao Y, Track W, Li H, Ho LWC, Shen Z, Choi CHJ. A pH-reversible fluorescent probe for in situ imaging of extracellular vesicles and their secretion from dwelling cells. Nano Lett. 2021;21:9224–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenkrans ZT, Ferreira CA, Ni D, Cai W. Internally responsive nanomaterials for activatable multimodal imaging of most cancers. Adv Healthc Mater. 2021;10:e2000690.

    Article 
    PubMed 

    Google Scholar
     

  • Jung KO, Kim YH, Chung SJ, Lee CH, Rhee S, Pratx G, Chung JK, Youn H. Identification of lymphatic and hematogenous routes of quickly labeled radioactive and fluorescent exosomes by means of extremely delicate multimodal imaging. Int J Mol Sci. 2020;21:7850.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marsh SR, Pridham KJ, Jourdan J, Gourdie RG. Novel protocols for scalable manufacturing of top of the range purified small extracellular vesicles from bovine milk. Nanotheranostics. 2021;5:488–98.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kameli N, Dragojlovic-Kerkache A, Savelkoul P, Stassen FR. Plant-derived extracellular vesicles: present findings, challenges, and future purposes. Membranes. 2021;11:411.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carvalho AL, Fonseca S, Miquel-Clopés A, Cross Ok, Kok KS, Wegmann U, Gil-Cordoso Ok, Bentley EG, Al Katy SHM, Coombes JL, et al. Bioengineering commensal bacteria-derived outer membrane vesicles for supply of biologics to the gastrointestinal and respiratory tract. J Extracell Vesicles. 2019;8:1632100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Debbi L, Guo S, Safina D, Levenberg S. Boosting extracellular vesicle secretion. Biotechnol Adv. 2022;59: 107983.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo S, Debbi L, Zohar B, Samuel R, Arzi RS, Fried AI, Carmon T, Shevach D, Redenski I, Schlachet I, et al. Stimulating extracellular vesicles manufacturing from engineered tissues by mechanical forces. Nano Lett. 2021;21:2497–504.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watson DC, Bayik D, Srivatsan A, Bergamaschi C, Valentin A, Niu G, Bear J, Monninger M, Solar M, Morales-Kastresana A, et al. Environment friendly manufacturing and enhanced tumor supply of engineered extracellular vesicles. Biomaterials. 2016;105:195–205.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adamo G, Fierli D, Romancino DP, Picciotto S, Barone ME, Aranyos A, Božič D. Nanoalgosomes: introducing extracellular vesicles produced by microalgae. J Extracell Vesicles. 2021;10: e12081.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang X, Chen C, Liu B, Ma Z, Hu F, Li H, Gu H, Xu H. A magnetic bead-mediated selective adsorption technique for extracellular vesicle separation and purification. Acta Biomater. 2021;124:336–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Search engine marketing N, Nakamura J, Kaneda T, Tateno H, Shimoda A, Ichiki T, Furukawa Ok, Hirabayashi J, Akiyoshi Ok, Shiku H. Distinguishing practical exosomes and different extracellular vesicles as a nucleic acid cargo by the anion-exchange technique. J Extracell Vesicles. 2022;11:e12205.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crewe C, Funcke JB, Li S, Joffin N, Gliniak CM, Ghaben AL, An YA, Sadek HA, Gordillo R, Akgul Y, et al. Extracellular vesicle-based interorgan transport of mitochondria from energetically pressured adipocytes. Cell Metab. 2021;33:1853-1868.e1811.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang M, Kaufman RJ. Protein misfolding within the endoplasmic reticulum as a conduit to human illness. Nature. 2016;529:326–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao Y, Yang Y, Zhou R, Gong T. Golgi equipment: an rising platform for innate immunity. Developments Cell Biol. 2020;30:467–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Falabella M, Minczuk M, Hanna MG, Viscomi C, Pitceathly RDS. Gene remedy for main mitochondrial ailments: experimental advances and medical challenges. Nat Rev Neurol. 2022;18:689–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson EL, Metzakopian E. ER-mitochondria contact websites in neurodegeneration: genetic screening approaches to analyze novel illness mechanisms. Cell Dying Differ. 2021;28:1804–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoo BC, Yadav NS, Orozco EM Jr, Sakai H. Cas9/gRNA-mediated genome modifying of yeast mitochondria and Chlamydomonas chloroplasts. PeerJ. 2020;8: e8362.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, et al. Search-and-replace genome modifying with out double-strand breaks or donor DNA. Nature. 2019;576:149–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amari L, Germain M. Mitochondrial extracellular vesicles-origins and roles. Entrance Mol Neurosci. 2021;14:767219.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong H, Zhang Q, Komarla A, Wang S, Duan Y, Zhou Z, Chen F, Fang RH, Xu S, Gao W, et al. Nanomaterial biointerfacing by way of mitochondrial membrane coating for focused cleansing and molecular detection. Nano Lett. 2021;21:2603–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu LN, Feng SY, Liang GF, Du J, Li A, Niu C. CRISPR/Cas9-induced β-carotene hydroxylase mutation in Dunaliella salina CCAP19/18. AMB Specific. 2021;11:83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng SY, Hu L, Zhang Q, Zhang F, Du J, Liang G, Li A, Track G, Liu Y. CRISPR/Cas expertise promotes the assorted software of Dunaliella salina system. Appl Microbiol Biotechnol. 2020;104:8621–30.

    Article 
    PubMed 

    Google Scholar
     

  • Leave a Reply

    Your email address will not be published. Required fields are marked *