Stress tuning of minibands in MoS2/WSe2 heterostructures revealed by moiré phonons


  • Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard mannequin physics in transition steel dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Magorrian, S. J. et al. Multifaceted moiré superlattice physics in twisted WSe2 bilayers. Phys. Rev. B 104, 125440 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Correlated digital phases in twisted bilayer transition steel dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sharpe, A. L. et al. Emergent ferromagnetism close to three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tang, Y. et al. Simulation of Hubbard mannequin physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Y. et al. Band engineering of large-twist-angle graphene/h-BN moiré superlattices with stress. Phys. Rev. Lett. 125, 226403 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, C. et al. Interlayer couplings, moiré patterns, and 2D digital superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 3, e1601459 (2017).

    Article 

    Google Scholar
     

  • Utama, M. et al. Visualization of the flat digital band in twisted bilayer graphene close to the magic angle twist. Nat. Phys. 17, 184–188 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Righi, A. et al. Graphene moiré patterns noticed by Umklapp double-resonance Raman scattering. Phys. Rev. B 84, 241409 (2011).

    Article 

    Google Scholar
     

  • Carozo, V. et al. Raman signature of graphene superlattices. Nano Lett. 11, 4527–4534 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Jorio, A. & Cançado, L. G. Raman spectroscopy of twisted bilayer graphene. Strong State Commun. 175, 3–12 (2013).

    Article 

    Google Scholar
     

  • Eliel, G. et al. Intralayer and interlayer electron–phonon interactions in twisted graphene heterostructures. Nat. Commun. 9, 1221 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lin, M.-L. et al. Moiré phonons in twisted bilayer MoS2. ACS Nano 12, 8770–8780 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Parzefall, P. et al. Moiré phonons in twisted MoSe2–WSe2 heterobilayers and their correlation with interlayer excitons. 2D Mater. 8, 035030 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Ok.-Q. et al. Giant-scale mapping of moiré superlattices by hyperspectral Raman imaging. Adv. Mater. 33, 2008333 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Enaldiev, V. V., Ferreira, F., Magorrian, S. J. & Fal’ko, V. I. Piezoelectric networks and ferroelectric domains in twistronic superlattices in WS2/MoS2 and WSe2/MoSe2 bilayers. 2D Mater. 8, 025030 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Ok. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Tateiwa, N. & Haga, Y. Evaluations of pressure-transmitting media for cryogenic experiments with diamond anvil cell. Rev. Sci. Instrum. 80, 123901 (2009).

    Article 

    Google Scholar
     

  • Feng, Y., Jaramillo, R., Wang, J., Ren, Y. & Rosenbaum, T. Invited article: high-pressure strategies for condensed matter physics at low temperature. Rev. Sci. Instrum. 81, 041301 (2010).

    Article 

    Google Scholar
     

  • Nayak, A. P. et al. Stress-dependent optical and vibrational properties of monolayer molybdenum disulfide. Nano Lett. 15, 346–353 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Machon, D. et al. Raman scattering research of graphene beneath excessive stress. J. Raman Spectrosc. 49, 121–129 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Alencar, R. S. et al. Atomic-layered MoS2 on SiO2 beneath excessive stress: bimodal adhesion and biaxial pressure results. Phys. Rev. Mater. 1, 024002 (2017).

    Article 

    Google Scholar
     

  • Chiu, M.-H. et al. Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der Waals stacking. ACS Nano 8, 9649–9656 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. Anomalous optical excitations from arrays of whirlpooled lattice distortions in moiré superlattices. Nat. Mater. 21, 890–895 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gong, C. et al. Band alignment of two-dimensional transition steel dichalcogenides: software in tunnel discipline impact transistors. Appl. Phys. Lett. 103, 053513 (2013).

    Article 

    Google Scholar
     

  • Kang, J., Tongay, S., Zhou, J., Li, J. & Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013).

    Article 

    Google Scholar
     

  • Thygesen, Ok. S. Calculating excitons, plasmons, and quasiparticles in 2D supplies and van der Waals heterostructures. 2D Mater. 4, 022004 (2017).

    Article 

    Google Scholar
     

  • Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der waals heterostructures. Nature 567, 81–86 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ruiz-Tijerina, D. A. & Fal’ko, V. I. Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B 99, 125424 (2019).

    Article 
    CAS 

    Google Scholar
     

  • McDonnell, L. P. et al. Superposition of intra- and inter-layer excitons in twistronic MoSe2/WSe2 bilayers probed by resonant Raman scattering. 2D Mater. 8, 035009 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ferreira, F., Magorrian, S. J., Enaldiev, V. V., Ruiz-Tijerina, D. A. & Fal’ko, V. I. Band vitality landscapes in twisted homobilayers of transition steel dichalcogenides. Appl. Phys. Lett. 118, 241602 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Selig, M. et al. Excitonic linewidth and coherence lifetime in monolayer transition steel dichalcogenides. Nat. Commun. 7, 13279 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Enaldiev, V., Ferreira, F., Magorrian, S. & Fal’ko, V. I. Piezoelectric networks and ferroelectric domains in twistronic superlattices in WS2/MoS2 and WSe2/MoSe2 bilayers. 2D Mater. 8, 025030 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Carvalho, B. R. et al. Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by double-resonance Raman spectroscopy. Nat. Commun. 8, 14670 (2017).

    Article 

    Google Scholar
     

  • Pimenta Martins, L. G. et al. Digital band tuning and multivalley Raman scattering in monolayer transition steel dichalcogenides at excessive pressures. ACS Nano 16, 8064–8075 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Park, J.-H. et al. Synthesis of high-performance monolayer molybdenum disulfide at low temperature. Small Strategies 5, 2000720 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Arora, A. et al. Excitonic resonances in skinny movies of WSe2: from monolayer to bulk materials. Nanoscale 7, 10421–10429 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Vaquero, D. et al. Excitons, trions and Rydberg states in monolayer MoS2 revealed by low-temperature photocurrent spectroscopy. Commun. Phys. 3, 194 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Paradisanos, I. et al. Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition. Nat. Commun. 11, 2391 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. I.-J. et al. Digital transport of encapsulated graphene and WSe2 units fabricated by pick-up of prepatterned hBN. Nano Lett. 15, 1898–1903 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Martins, L. G. P. et al. Onerous, clear, sp3-containing 2D section fashioned from few-layer graphene beneath compression. Carbon 173, 744–757 (2021).

    Article 

    Google Scholar
     

  • Karni, O. et al. Infrared interlayer exciton emission in MoS2/WSe2 heterostructures. Phys. Rev. Lett. 123, 247402 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kozawa, D. et al. Photocarrier leisure pathway in two-dimensional semiconducting transition steel dichalcogenides. Nat. Commun. 5, 4543 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Viner, J. J. S. et al. Excited Rydberg states in MoSe2/WSe2 heterostructures. 2D Mater. 8, 035047 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pisoni, R. et al. Interactions and magnetotransport by spin-valley coupled Landau ranges in monolayer MoS2. Phys. Rev. Lett. 121, 247701 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, P. V. et al. Visualizing electrostatic gating results in two-dimensional heterostructures. Nature 572, 220–223 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gustafsson, M. V. et al. Ambipolar Landau ranges and robust band-selective provider interactions in monolayer WSe2. Nat. Mater. 17, 411–415 (2018).

    Article 

    Google Scholar
     

  • Hohenberg, P. & Kohn, W. Inhomogeneous electron fuel. Phys. Rev. 136, B864 (1964).

    Article 

    Google Scholar
     

  • Kohn, W. & Sham, L. J. Self-consistent equations together with trade and correlation results. Phys. Rev. 140, A1133–A1138 (1965).

    Article 

    Google Scholar
     

  • Soler, J. M. et al. The SIESTA methodology for ab initio order-N supplies simulation. J. Phys.: Condens. Matter 14, 2745 (2002).

    CAS 

    Google Scholar
     

  • Troullier, N. & Martins, J. L. Environment friendly pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Kleinman, L. & Bylander, D. Efficacious kind for mannequin pseudopotentials. Phys. Rev. Lett. 48, 1425 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Moreno, J. & Soler, J. M. Optimum meshes for integrals in real- and reciprocal-space unit cells. Phys. Rev. B 45, 13891–13898 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave methodology. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave methodology. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Effectivity of ab-initio whole vitality calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Togo, A. & Tanaka, I. First rules phonon calculations in supplies science. Scr. Mater. 108, 1–5 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Pimenta Martins, L. G. et al. Dataset for pressure-tuning of minibands in MoS2/WSe2 heterostructures revealed by moiré phonons. Zenodo https://doi.org/10.5281/zenodo.7872421 (2023).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *